Affine scaling methods for image deblurring problems
نویسندگان
چکیده
Blur in images can be removed by solving a series of box-constrained least-squares problems. In this paper, we compare two recent approaches for solving these problems using affine-scaling methods. Both approaches aim at solving a nonlinear system arising from the Karush-Kuhn-Tucker condition. One approach is to identify the active set and update the inactive components of the iterates by using a Newton-like method. The other is to iteratively solve the nonlinear system entry-wise by a Quasi-Newton method.
منابع مشابه
A Scaled Gradient Projection Method for Constrained Image Deblurring
A class of scaled gradient projection methods for optimization problems with simple constraints is considered. These iterative algorithms can be useful in variational approaches to image deblurring that lead to minimize convex nonlinear functions subject to nonnegativity constraints and, in some cases, to an additional flux conservation constraint. A special gradient projection method is introd...
متن کاملBlind Deconvolution Using a Regularized Structured Total Least Norm Algorithm
Rosen, Park, and Glick proposed the structured total least norm (STLN) algorithm for solving problems in which both the matrix and the right-hand side contain errors. We extend this algorithm for ill-posed problems by adding regularization, and we use the resulting algorithm to solve blind deconvolution problems as encountered in image deblurring when both the image and the blurring function ha...
متن کاملA computational algorithm for minimizing total variation in image restoration
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). Th...
متن کاملA fast subspace method for image deblurring
Image deblurring problems appear frequently in astronomical image analysis. For image deblurring problems, it is reasonable to add a non-negativity constraint because of the physical meaning of the image. Previous research works are mainly full-space methods, i.e., solving a regularized optimization problem in a full space. To solve the problem more efficiently, we propose a subspace method. We...
متن کاملOn Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کامل